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Abstract

Over the past decads there has been an explosion in the amount of available Earth Observa-
tion (EO) data. The unprecedented coverage of the Earth’s surface and atmosphere by satellite
imagery has resulted in large volumes of data that must be transmitted to ground stations,
stored in data centers, and distributed to end users. Modern Earth System Models (ESMs)
face similar issues, operating at high resolutions in space and time, producing petabytes of data
per simulated day. The problem of how to efficiently store and compress data has long been
studied. In recent years, approaches combining deep learning and information theory for data
compression have shown great promise, spawning the field of neural compression. The advent
of self-supervised learning (SSL) and foundation models (FM) boosted progress in methodolo-
gies to efficiently distill representations from vast amounts of unlabeled data. EO and ESMs
provide a promising playground for neural compression, with a wealth of unlabeled data readily
available.

In this review, we share an overview of current developments in the field of neural compres-
sion applied to geospatial analytics. We introduce the main concepts in neural compression
and its seminal works in traditional applications to image and video compression domains. We
then review works that have applied neural compression to a wide variety of EO modalities. An
additional section covers the currently sparse efforts to utilize neural compression for ESMs. In
addition, we connect these developments of neural compression for EO to foundation models
to highlight the potential of transferring compressed feature representations for machine–to–
machine communication. Based on insights drawn from this review, we devise future directions
relevant to applications in EO and ESM.
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Figure 1: Domain-specific shares in publications in neural compression methodologies from years
2000 through 2024, source: query to the Web of Science [200].

1 Introduction

1.1 Motivation & Approach

Earth Observation (EO) is the process of capturing data about the Earth’s surface and atmosphere,
carried out through instruments on board satellites, airborne vehicles, or ground stations. The
instruments used for collection vary considerably in their specifications, capturing different aspects
of the Earth using different spectral regions and resolutions, Ground Sample Distances (GSMs), and
revisit times, amongst many other factors. Due to their constant operation and wide coverage, the
bulk of this data is produced by satellites, with the Copernicus system alone delivering a reported
16 terabytes of data per day [156]. As large as this amount of data already is, it is only set to
increase, with over 100 new EO satellites launched in 2021, over 150 in 2022, and almost 250 in
2023 [201]. Additionally, newer satellite constellations are equipped with more powerful sensors,
capable of capturing higher spatial and spectral resolution imagery, leading to a further increase in
data volume.

Earth System Models (ESMs) simulate processes of the Earth system to predict future climate.
While they generate their own data, they rely on earth observation data to constrain their pa-
rameters. These systems also produce large volumes of data, and, driven by the need for higher
resolutions to resolve and predict increasingly complex phenomena, these volumes are certain to
increase with next-generation ESMs.

The importance of accessing EO and ESM data for analysis cannot be overstated. ESMs are vital
for predicting the course of climate change and its potential impacts across the Earth. However,
the computational cost of running them prohibits repeated computation, requiring the complete
outputs of their runs to be stored. EO, on the other hand, is crucial not only in assessing the
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Figure 2: Literature on neural compression summarized for the past 15 years. We plot separate
bars for remote sensing and recent developments in foundation model methodology. The data for
2024 are linear projections from March to the end of the year. Data source: queries to the Web of
Science [199].

current state of the Earth but also in keeping a record of the past state, with datasets such as
ERA5 [110] spanning decades. To best utilize this data, it is critical to store it for long-term usage,
enabling comparative studies, as well as distribute it to end users effectively. There are two main
bottlenecks in doing this. The first relates to the limited bandwidth between satellites and base
stations, required for transferring the observations for storage and analysis on the ground. This is
a well-known problem in the community, referred to as the data downlink bottleneck [148]. The
second relates to how such a volume of data can be stored on a physical medium, or transferred
through a network, typically from data centers to different research institutions distributed globally.

This growth in volume demands new approaches to efficiently store only those aspects of the data
that are required for their reconstruction or usage for geospatial analytics. Under this setting, in this
review, we motivate the need for further research into Neural compression for EO and ESMs. Neural
compression uses deep neural networks to perform data compression. It seeks to learn from datasets
how to identify and efficiently store those critical aspects of the data, discarding unimportant or
repeated information. It has seen success across several fields such as image compression [89],
video compression [162], and audio compression [149], outperforming traditional hand-designed
compression algorithms. These algorithms are mostly based on autoencoders [14] and do not require
labels. However, they do rely on large datasets which representatively sample the underlying
probability distribution of the data. This creates an inviting environment for adapting and applying
neural compression techniques to EO and ESM. In this domain application, Neural Compression
for Geospatial Analytics embraces computational algorithms employing artificial neural networks to

5



reduce the storage required to digitize geospatial data while comprehending its information content.
Fig. 2 reveals the growth in popularity of neural compression in research publications. It also

demonstrates that applying neural compression to this domain is not a new idea, as we see an
increase in those publications, although with some delay. However, Fig. 1 illustrates that it is still
a relatively unexplored topic in remote sensing, making up only 3 percent of publications in neural
compression methodologies.

Foundation Models (FMs), large pre-trained neural networks that seek to provide embedding
spaces that can be leveraged for multiple downstream tasks in a domain, have on the other hand been
more quickly adopted in remote sensing domains. They share similarities with neural compression,
with both being trained on very large unlabeled datasets to extract fundamental features from data.
We frequently refer to FMs throughout this work, diving into their application to the geospatial
domain in Section 1.3 and discussing their combination with neural compression in order to be used
as compressed feature generators in Section 2 and Section 3.

The goal of this work is to introduce the topic of neural compression to a technical reader who
is a newcomer to the field and explore its application to geospatial analytics. Section 2 will provide
the relevant background as well as a review of state-of-the-art methodologies in neural compression.
Section 3 continues by exploring neural compression in EO whereas Section 4 is dedicated to the
compression of the outputs from ESMs, with both sections laying out the challenges, imposed by
each domain, in applying neural compression. Section 5 focuses on how neural compressors for
geospatial analytics may be integrated into geospatial data platforms, and, by way of example,
discusses how this integration democratizes geospatial applications in domains such as global veg-
etation monitoring, maritime awareness, climate modeling, and agriculture management. We close
our review in Section 6 highlighting relevant future directions for the field of neural compression
for geospatial analytics.

1.2 Traditional vs. Neural Compression

Compression algorithms aim to encode a signal in as few bits–or symbols–as possible. These algo-
rithms are core enablers of modern computing infrastructures, allowing different types of data to
be stored and transmitted without prohibitively large costs.

Traditionally, compression algorithms–or codecs–consist of a pipeline of components that have
been engineered by hand by experts to compress signals of a specific type. We denote them as
engineered by hand in the sense that they are not the direct result of data-driven algorithms, but
rather human-crafted applications of signal processing and information theory, with each codec
requiring a large number of human hours of work, often organized through consortia. Currently,
virtually all codecs seeing widespread use belong to this category, such as MP3 [13], H.264 [40],
HEVC [47] or JPEG [11], to name only a few.

Learning-based methods, including artificial neural networks, have been explored for compres-
sion since at least the 1980s [10]. However, with the recent emergence of deep learning, promising
results [166, 63] led to a growth of research in the field of neural data compression. The main
premise of neural compression is to replace traditionally hand-designed components of codecs with
data-driven modules, usually neural networks, typically learned over a large representative dataset.
Ultimately, not just individual components are replaced, but rather the whole pipeline, leading to
a codec that is learned fully end-to-end.

Two main benefits emerge from learned approaches. The first is the reduction in expert hours
required for elaborating algorithms, relying on data-driven processes to determine the transforma-
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tions applied to the data. This is particularly relevant for emergent data types, or those without
extremely widespread use, such as scientific data, where it may not be economically viable to de-
velop custom new codecs. By modifying the loss function, the codec can be explicitly trained to
prioritize different aspects of the data, depending on its type and use case, as opposed to manually
tuning the parameters of different components in a traditional codec.

The second is the potential for improved compression, in particular, due to the joint optimization
of all learned components. Especially when the domain of data is known a priori (e.g. optical
imagery from satellites) and fixed, a neural codec can specialize to that domain simply through the
design of its training dataset, granting it an advantage compared to traditional codecs designed to
offer stable performance across many domains.

Despite the complexity of these pipelines, compression algorithms can essentially achieve their
goal in two main ways, both of which deep learning proposes to improve:

1. Cleverly encoding the signal using fewer symbols. Let us consider the simple scenario
of a system that can be in one of three states A, B, or C with probabilities 0.9, 0.09, and
0.01 respectively. If we wish to transmit information about the state of the system across a
network using the symbols 0, 10, and 110 (these are examples of prefix-free codes, meaning a
string of such symbols can be decoded unambiguously without the need for special delimiting
symbols), we can immediately see it makes sense to assign the shortest code, 0, to the most
frequently occurring state A.

We could try to further improve our encoder if we could leverage the symbols we have thus
far decoded as context. For instance, let us assume we know that after the sequence A B, C
always occurs. Then, we can potentially omit it completely from our encoded message, since
the decoder will know after decoding A and then B, C must follow.

However, no matter how clever our encoding scheme is, there is a fundamental limit to the
minimum number of symbols we must transmit to recover a given signal, dependent on its
information content. In Section 2, we formalize this notion of information, but it is ultimately
dependent on the probability distribution of all messages we are interested in encoding. Having
an accurate model of this distribution, in particular one that takes into account the context
surrounding a given symbol, turns out to be a crucial building block to be able to cleverly
encode data. Leveraging neural networks allows us to learn complex models of the underlying
data distribution, leading to more optimal encoding schemes.

2. Allowing for some loss of information. This differentiates codecs into lossy and lossless
compression algorithms. In lossy compression, some parts of a signal may be deemed as
unimportant or too costly to encode and thus may be dropped, leading to a potentially large
reduction in the length of the encoded signal.

A common application of this idea makes use of spectral analysis. Let us consider compressing
an audio signal. To do this, we can perform a Fourier transform, obtaining the spectral
composition of the signal. If we were to transmit the result of the Fourier Transform, the
receiver would be able to perfectly reconstruct the original audio signal by performing the
Inverse Fourier Transform. However, we may decide that, for our human listeners, we can get
away with dropping all frequencies above a certain threshold in our signal, thus reducing the
amount of information we need to transmit. While that part of the signal is certainly now
lost to the receiver, they may not notice or indeed may not mind.
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Understanding which parts of the signal to drop to minimize the impact on its reconstruction
is critical in designing such algorithms. By leveraging deep neural networks to learn the
structure of the data, more optimal trade-offs between message length and reconstruction
quality can be discovered.

1.3 Foundation Models for Remote Sensing & Atmospheric Modelling

The emergence of foundation models represents a fundamental paradigm shift in deep learning.
This paradigm shift has primarily resulted from three factors: (1) the availability of vast amounts
of unlabeled data, (2) the emergence of self-supervision, a concept that allows deep learning models
to learn from unlabeled data, and (3) a significant increase of computational power that allowed
to train self-supervised models on vast amounts of unlabeled data at scale [125]. The absence of
human-annotated labels in such large-scale training processes results in task-agnostic deep learning
models that are generally referred to as foundation models.

While the adoption of foundation models began with natural language and images, several
additional domains are characterized by significant available data volumes that have remained
largely unlabeled due to a lack of scaling in the human annotation processes. Two of these domains
are remote sensing of the earth’s surface (e.g., satellite imagery) and atmospheric modeling. In both,
data generation has accelerated significantly with the availability of sensors, satellite missions, and
ground measurements. Human annotation of this data to enable task-specific supervised deep
learning is therefore infeasible. Thus, self-supervision is of significant interest in remote sensing
of the earth’s surface and atmosphere, resulting in a recent push towards foundation models for
remote sensing [181, 184, 165, 210, 168, 209, 179, 198]. Such task-agnostic models are meant to
serve as a foundation that can be fine-tuned to a range of downstream applications with reduced
computational effort compared to supervised deep learning, an improved generalization behavior,
and a natural compression of the raw data into a latent space representation.

Empirical evidence demonstrates several improved capabilities of foundation models for remote
sensing and atmospheric modeling compared to supervised deep learning models. For example, re-
cent work has shown a significant acceleration in solving tasks in remote sensing based on pre-trained
large-scale self-supervised models (e.g., [165]). In addition, the amount of required task-specific
data (typically human-annotated) to finetune pre-trained foundation models can be significantly
reduced [181]. This means foundation models are more data-efficient when applied to specific tasks
than other supervised deep learning models. Furthermore, recent research demonstrated that foun-
dation models for remote sensing benefit from their pre-training when generalizing to other, unseen
geographical regions. For example, models have performed better on segmenting flood extents in
regions that have not been part of the pretraining data compared to other supervised deep learning
approaches [186]. Finally, based on the task-agnostic nature of the pretraining, the same foundation
model can be re-used and finetuned to diverse tasks in earth observation and atmospheric modeling
(e.g., [184]).

Despite various benefits resulting from foundation models for remote sensing of land and atmo-
sphere, several challenges remain—especially regarding their significant data consumption, creating
significant data transmission and storage bottlenecks. While foundation models can be seen as
performing a certain compression of the raw data in the embedding space, those embeddings are
still relatively large. This makes the neural compression of embeddings particularly interesting [206,
208], especially in an upcoming era of large growth in data generation.
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2 (Lossy) Neural Compression

In this section, we begin with an introduction to lossy compression, presenting neural compression
as an extension of transform coding. We then provide an overview of the neural compression
literature, proposing a taxonomy for navigating the field and detailing works most relevant to our
geospatial focus. For a more theoretical and in-depth introduction to the field, we refer readers to
Yang et al. [195].

2.1 Background

2.1.1 Lossy Compression

Lossy compression considers the scenario where an imperfect signal reconstruction is acceptable.
More concretely, let S be a random variable, known as a source, producing symbols which we
concatenate into strings x := (x1, x2, . . . , xn) from some alphabet X . We often refer to x as the
signal, or message, to be compressed. For example, in image compression, the message x would be
a 3-dimensional tensor representing an image, with each symbol being an integer corresponding to
a pixel value.

In order to do this, we require an encoder e that maps x to a string of symbols ẑ := (z1, z2, . . . , zm)
from a different alphabet Z. Additionally, a decoder d seeks to recover x as d(ẑ) = x′. To efficiently
transmit z, the encoder and decoder agree on an encoding scheme ϕ, known as an entropy code,
which losslessly encodes ẑ into a binary string. Examples of such schemes are Huffman Coding [3]
or Arithmetic Coding [7]. Intuitively, ϕ may assign shorter binary codes to commonly occurring
symbols or groups of symbols, to reduce the length of the encoded message without losing informa-
tion.

Collectively, a concrete e, d and ϕ specify a codec. The goal of e is to minimize the length of
the new string ϕ(z), known as the code-length, and expressed in bits, while minimizing the loss of
information in the reconstruction from the decoder x′. Abstracted in e is the mechanism by which
information loss is introduced in the system as part of a quantization step. We discuss different
quantization methods in further detail in Section 2.3.2. Therefore, lossy compression inherently
involves a trade-off between compression and distortion.

We can express this trade-off as a Lagrangian optimization problem.

minλD +R . (1)

The two terms in this expression are the rate R, the expected number of bits required to transmit
a data point, and the distortion D, the expected error between a data point and its reconstruction,
with λ controlling the trade-off between both. Codecs with different trade-offs between R and D
can be seen as optimizing for different values of λ. Plotting R against D as λ is varied yields
a Rate–Distortion plot, which characterizes the performance of a lossy compression method and
enables it to be compared to others. An example is shown in Figure 3.

We will now further concretize both of these terms, constructing a loss function from Expres-
sion 1. For the rate term R, we rely on Shannon’s source coding theorem [2], which provides us
with a lower bound on the number of bits required to losslessly encode ẑ as

− log2 p(ẑ) , (2)
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Figure 3: Left: Toy Rate–Distortion plot. The method in blue performs better than the one in
green for low bitrates whereas the method in red outperforms them both across all bitrates. Right:
Distortion is often replaced with some quality measure (e.g. PSNR) in which case we obtain a Rate-
Quality plot.

where p is the probability mass function of the distribution of ẑ. The expectation of this quantity
over p

E[− log2 p(ẑ)] , (3)

is known as the entropy of the distribution and characterizes how difficult it is to compress samples
drawn from it.

Taking the value from Expression 2 as R abstracts us from any particular encoding scheme that
may be used. While this value is only the best achievable rate, and not the real number of bits
achieved by the algorithm (known as the operational rate), in practice, encoding schemes such as
arithmetic coding [7] can achieve operational rates very close to this lower bound [216], making this
a good approximation which will also be useful to enable calculating gradients with respect to this
loss. However, this estimate is very dependent on the form we determine for p.

The distortion term D relies on an underlying error function ρ(x,x′). ρ can be any error measure
that appropriately captures distortion between the input and reconstruction for the domain in
question. Typical examples for image and video compression are the mean squared error or the
structural similarity index measure (SSIM) [24].

2.1.2 Transform coding

The neural compression methods explored in this section can be seen as non-linear, learned varia-
tions [106] of the transform coding paradigm [19]. Transform coding is a core idea behind modern
codecs, including traditional ones such as JPEG or HEVC. It extends the previous encoder by
adding a first step: applying a transform on the raw data before quantizing and entropy coding it.
This transform aims to map the data to a space where it can be more easily compressed.
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Figure 4: Illustration of the transform coding framework and its adaptation to neural transform
coding. Components within orange boxes are replaced with learned counterparts. Terms within
purple boxes are used in the loss.

Neural transform coding is a natural extension of transform coding, where hand-crafted com-
ponents in the pipeline can be replaced by artificial neural networks trained on large datasets. We
now go through these steps, illustrated in Figure 4, identifying these extensions:

• Transform f(x) = z. Often, the input data x is expressed as a vector whose coordinates are
correlated. In natural images, for instance, adjacent pixels tend to have similar values. These
correlations are redundancies in the input signal: knowing part of the signal allows guessing
the remainder without actually seeing it. Hence, discarding such correlations is desirable in
a compression framework. In practice, a transform f is used to map the data into another
representation z = f(x) whose coordinates are less correlated, and ideally independent. This
operation aims at facilitating the quantization and entropy modeling steps that follow. The
dimensions of z will often take continuous values, as is the case with the Fourier Transform [8]
or the Discrete Wavelet Transform [12] (used in JPEG).

In traditional compression literature, f is a hand-crafted, linear, fully-invertible mapping and
is referred to as the analysis transform. In neural compression, f is an artificial neural network
trained to map x to an embedding z in a continuous latent space. Somewhat misleadingly,
the neural network f may also be called the encoder network. The ability to learn complex
non-linear transforms directly from dataset statistics puts neural compression approaches at
a great advantage compared to handcrafted methods. Figure 5 illustrates this with a toy
example.

• Quantization q(z) = ẑ. Since the output of the transform is embedded in a continuous
latent space, it must necessarily be quantized, as data from a continuous source requires an
infinite number of bits to be losslessly compressed. Beyond its necessity in this case, this
discretization is where the information loss is introduced in the compression process, and is
thus also the mechanism by which rate is traded for distortion, controlled by the transform
and the quantization method. A neural network transform f can learn how to warp the
embedding space to effectively manipulate which information is lost through quantization. By
quantization, we broadly mean any mapping from a continuous to a discrete and countable
set. The chosen quantization method q is applied to z, with q(z) = ẑ.
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Figure 5: Linear transform code (left), and nonlinear transform code (right) of a banana-shaped
source distribution, both obtained by empirically minimizing the rate–distortion Lagrangian. Lines
represent quantization bin boundaries, while dots indicate code vectors. While LTC is limited
to lattice quantization, NTC can more closely adapt to the source, leading to better compression
performance [...]. Figure and caption taken from [106]

• Entropy (de)coding. Once the discretized representation of the data ẑ is obtained, it can
be losslessly compressed through entropy coding, mapping symbols into codes whose length
reflects their likelihood given the previous symbols. Assuming an efficient encoding scheme,
such as arithmetic coding, the efficacy of this compression is determined by the entropy model
p′. Since the underlying data distribution p is unknown, we can only model it. An accurate
approximation p′ is critical for the entropy code to correctly assign shorter codes to more
frequently occurring symbols and minimize the average length of the compressed represen-
tations. How well p′ approaches p determines how close to the lower bound in Expression 2
the length of the final encoding can get, with an exact match when p′ exactly models p. In
neural compression, the entropy model also takes on an additional role during training, where
it is used to provide differentiable estimates of the cost in bits of encoding a batch. This
quantity is incorporated into the loss of the model, enabling an end-to-end rate–distortion
optimization. On the receiver side, the reverse process is applied to recover ẑ.

• Inverse Transform g(ẑ) = x′. To reconstruct the data, the inverse transform g is applied.
In the neural compression case, we usually to not have access to an analytical expression of the
inverse of the encoder f . Instead, a second neural network is employed to learn to reconstruct
the original data given the quantized representation. g is often referred to as the synthesis
transform or, in the case of a neural network, the decoder. Finally, this gives us g(ẑ) = x′,
the reconstruction of x with some loss.

Neural compression aims to optimize over the Lagrangian from Expression 1 end-to-end using the
machinery of deep learning. By setting the loss function to the Lagrangian, defining f and g as deep
neural networks, and flexibly modeling p (often also through neural networks), neural compression
can learn non-linear functions for the transforms and complex models for p, with superior rate–
distortion performance compared to traditional compressors, which has been demonstrated for tasks
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such as image [89], video [162], audio [149], and 3D scene compression [124].
Two important details, which we postpone to Section 2.3.3, are the concrete form of the quan-

tization and how a continuous model p can be used to fit the resulting discrete distribution.
We can now write out the full form of the loss for a single input x as

L(x) = λ · ρ
(
x, g

(
q(f(x))

))
︸ ︷︷ ︸

D

R︷ ︸︸ ︷
− log2 p

′
(
q
(
f(x)

))
. (4)

Let us analyze each term individually. For the distortion term D, we see that only f and g, the
encoder and decoder networks, take part in it. The gradients of this loss will push the encoder
network to produce representations that are robust to quantization such that they are capable of
being reconstructed by the decoder into the original input as accurately as possible.

For the rate term R, we see that only the entropy model and the encoder network take part
in it. From the perspective of the encoder network, it may minimize this term by minimizing the
entropy of the distribution of symbols it produces, guided by the entropy model p′. In other words,
the encoder network is encouraged to produce compressible representations z.

From the perspective of the entropy model p, it is helpful to realize that this entropy term takes
the same form as the cross-entropy loss one would use to fit a model p to a distribution through
samples ẑ. Furthermore, the cross-entropy is precisely the expected amount of bits required to
entropy code ẑ when using the approximated distribution p′ and is minimized when p′ matches p.
Thus, to minimize this term, p will aim to assign high probability to ẑ to minimize the loss, under
the constraint that it must be a valid probability density function.

Since p only participates in the loss through this entropy term, the gradients of its parameters
with respect to the distortion term will be 0. Thus, using the same loss, f and g can be trained
while jointly fitting p′ to ẑ.

2.2 Compression Taxonomy

We begin by broadly categorizing approaches to compression. The first categorization is between
lossy and lossless compression, where the characterizing decision is whether some loss of information
is acceptable, usually through the introduction of quantization. We continue by further dividing
methods into those that are explicitly engineered and those that are learned from data. The
compression algorithms in most widespread use today fall into the category of explicitly engineered,
as is the case for JPEG [11], MP3 [13], or HEVC [47].

Due to the breadth of the field, we limit the scope of this section to those methods we believe
are set to have a greater impact on research in the near future. First, while there is some work on
lossless neural compression [98, 116, 104], we consider only lossy neural compression methods. This
is necessary to provide compression ratios that can compete with currently employed standards,
such as JPEG, and thus offer viable alternatives when deployed across EO applications at scale.

Second, we focus on learned compression methods, which have consistently been shown to
outperform their hand-designed counterparts in rate–distortion metrics.

With the framework exposed in this chapter in mind, we identify the four main axes of variation
in such works:
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• Transforms. This axis encompasses all aspects of the encoder and decoder models, chiefly
determined by their architecture.

• Quantization strategies. This axis defines how continuous data representations are dis-
cretized, and how this discrete step can be made compatible with an end-to-end learning
process.

• Entropy models. This axis is determined by the chosen set of assumptions in modeling the
distribution of the transformed data (namely the independence or conditional independence
relations among different dimensions) together with the implementation used to concretize
these assumptions.

• Optimization objectives. Neural compression approaches are trained end-to-end using
a rate–distortion loss. The final axis represents the variability in optimization objectives,
namely concerning the chosen distortion measure.

2.3 Methods in Neural Compression

Table 1: Collection of neural compression papers in this chapter, aligned by contributions along
the axes described in Section 2.2.

Axis Approach Papers

Transforms

CNN [63, 82, 166, 89]
RNN [59]
Transformer [170]
INR [124, 130, 127, 164, 178]

Quantization Strategies

Scalar Uniform Quantization [62, 166]
Binarization [59, 78, 86]
Vector Quantization [69, 88]
Weight Quantization [124, 178]

Entropy Models
Fully Factorized [62, 82]
Hyperprior [82]
Autoregressive [82]

Optimization Objectives
Rate-Distortion-X [150, 172]
Downstream Embedding [118, 129]
Split Computing [161, 205]

2.3.1 Transforms

In the learned image and video compression domains, the synthesis and analysis transforms are
most often concretized as two halves of a deep convolutional auto-encoder [43] as popularized by
Ballé et al. [63] and Theis et al. [166].
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In these works, the general structure of the encoder follows that of a typical deep convolutional
architecture, with a repeating pattern of convolutional layers and non-linear activations gradu-
ally reducing the spatial dimensions of the feature maps while increasing the number of channels
(otherwise known as the embedding dimension). As its counterpart, the decoder also employs a
deep convolutional architecture to gradually spatially upsample the feature maps while reducing
the number of channels to recover the original input. This architecture, as per Ballé et al. [82],
is shown in Fig. 6. Many improvements to these transforms have been inherited from architec-
tural innovations in the fields of deep learning and computer vision, for instance, the integration of
mechanisms such as attention [51] or residual connections [64] into the network.

Enabled by the general formulation of neural transform coding, as neural compression has contin-
ued to evolve, researchers have explored alternative architectures beyond traditional convolutional
networks. Indeed, unstructured data compression has leveraged fully connected feed-forward neural
networks [106] and earlier works employed recurrent neural networks (RNNs) [59] as encoder and
decoder architectures. More recent works have also explored the use of transformers [171].

A very different paradigm that has also emerged is that of Implicit Neural Representations
(INRs). Popularized in large part through their use in Nerf [141] for 3D scene representation,
INRs have shown promise as an alternative way of representing and storing 3D geometry [100, 99,
94], audio [119], images [119], video [128], amongst others. INRs aim to represent any signal as an
implicitly defined function. For instance, we may represent an image as a function f(x, y) : R2 → R3

mapping from pixel coordinates x and y to an RGB value. In practice, this function is learned by
overfitting a neural network on a single input such that it can be recovered through inference on the
network, essentially storing the input in the network’s weights. This representation allows for the
leveraging of model compression literature to achieve general signal compression. It has successfully
been employed for compressing 3D scenes [124], images [130, 164] and videos [127, 178], although
their use together with an entropy penalty is still not ubiquitous, with many methods relying instead
on more typical model compression techniques.

Somewhat informally, we propose that this can also be seen as a pair of transforms. The
encoder is replaced by the training process, mapping the input into the space of the neural network
parameters, and the decoder is replaced by the forward pass of the network itself. The remaining 3
axes are then still fully applicable to INRs. INRs show competitive performance in R-D performance
as well as versatility in the types of signals they can encode. In particular, since they encode a single
sample, they are not affected by the out-of-distribution problem that other neural compression
methods may face and thus do not require a large dataset to be collected. Additionally, since
decoding is simply a forward pass on the network, it typically can be fully parallelized, granting it
great performance advantages in fields such as video compression [127, 178]. However, the lengthy
training process required for compressing each sample makes INRs impractical for deployment in
many real-world applications.

2.3.2 Quantization Strategies

It can be shown that the optimal rate for a given distortion can be achieved through vector quan-
tization [29]. In vector quantization, all dimensions of the space are jointly discretized, usually by
mapping the given z to its nearest neighbor in a codebook. However, as the dimension of z grows,
vector quantization becomes infeasible, with the curse of dimensionality requiring exponentially
more entries in the codebook to optimally quantize the space, along with more data and compute
to optimize them.
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Figure 6: Network architecture of the hyperprior model [82]. The left side shows an image au-
toencoder architecture, the right side corresponds to the autoencoder implementing the hyperprior.
The factorized-prior model uses the identical architecture for the analysis and synthesis transforms
ga and gs. Q represents quantization, and AE, AD represent arithmetic encoder and arithmetic
decoder, respectively. Convolution parameters are denoted as: number of filters × kernel support
height × kernel support width / down- or upsampling stride, where ↑ indicates upsampling and ↓
downsampling. N and M were chosen dependent on λ, with N = 128 and M = 192 for the 5 lower
values, and N = 192 and M = 320 for the 3 higher values. Figure and caption taken from Ballé
et al. [82].

As an alternative, the most popular form of quantization in the non-linear transform coding
paradigm is scalar uniform quantization, as introduced by Ballé et al. [62] and Theis et al. [166],
where each dimension of the transformed data is independently quantized. In practical terms, this
quantization usually consists of rounding each element of the transformed input to the nearest
integer. This scheme can be seen as a constrained form of vector quantization where the grid
is fixed and equal to the set of integers [195]. Its effectiveness despite its simplicity is enabled
by the flexible non-linear transforms which can in essence warp this grid as desired. The two
approaches are illustrated in Figure 7 The main obstacle introduced by the quantization step is that
of non-differentiability. To carry out the end-to-end optimization, it is necessary to backpropagate
gradients through the whole network. However, the quantization step will have a gradient of 0
almost everywhere, preventing any components before it from receiving gradients necessary for
optimization. The two main techniques to address non-differentiability are:

• Straight Through Estimator (STE). The STE [48] proposes to backpropagate through
non-differentiable components by treating them as if they were the identity function during
the backpropagation process, fixing their gradient to 1, thus allowing gradients to pass through
unchanged. Theis et al. [166] propose to apply this to the quantization function for end-to-end
training. Through the forward process, the quantization is unchanged.
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Figure 7: Illustration of vector vs scalar quantization for a given data distribution, shown in yellow.
Left: Vector quantization can efficiently cover the space by freely building a codebook of vectors,
shown in blue. Right: Scalar quantization quantizes each dimension individually. This potentially
leads to an inefficient coverage of the space, with many quantization points covering areas that are
outside the distribution of the data. In this case, uniform quantization to the integers is shown.

• Uniform Noise. Ballé et al. [62] propose the replacement of quantization during training
with additive uniform noise with the same width as the quantization bins. In the case of
rounding to the nearest integer, this has the range of [−0.5, 0.5].

Empirically, the combination of both of these methods seems to be optimal for training [147],
with the STE used for calculating the distortion term and additive uniform noise used for the
entropy term.

Other forms of quantization have also been explored, despite being less popular. Early works
in the field employed binarization as a form of quantization, reducing every element of z to one
of two values [59, 78, 86]. Vector quantization (VQ) has also been successfully employed in neu-
ral transform coding [69, 88] with adaptations to mitigate its computational complexity problems.
Promisingly, recent work in generative modeling combines these approaches, leveraging a Vector
Quantized Generative Adversarial Network (VQ-GAN) [131] for vector quantization and binariza-
tion to make this quantization more computationally feasible [196]. Despite the work focusing on
video generation, it demonstrates competitive performance in video compression.

VQ-GANs extend the Vector Quantized Variational Autoencoder (VQ-VAE) framework by em-
ploying an adversarial training strategy [84] to discriminate between real input images and the
reconstructed outputs of the VQ-VAE decoder. Moreover, VQ-GANs enable the synthesis of
high-resolution images (i.e., in the megapixel range) by feeding the learnt (quantized) embed-
dings and their codebook to a transformer-based model. This interplay between GAN-enhanced
autoencoder-based compression and transformer-based synthesis outperforms equivalent state-of-
the-art approaches using plain autoencoders, thus opening the way for more context-rich compres-
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sion strategies.
In the case of INRs, quantization often inherits from general neural network compression, in-

volving strategies such as weight quantization or pruning [130, 127]. These can be applied after the
optimization process or, often achieving better results, throughout it. Quantization-aware train-
ing [85] can be used to obtain an INR that is more robust to the error introduced by quantization,
and finetuning after pruning can reduce its effect on distortion [127].

2.3.3 Entropy Models

The objective of the entropy model is to provide accurate approximations of p(ẑ) for two purposes:

a) the estimation of the rate during training to be used in the loss and

b) entropy coding and decoding in operational use after the network has been trained.

Both of these uses impose a demand for reasonable computational efficiency in this process, while
a) additionally requiring differentiability to enable end-to-end training. To optimize a differentiable
model over the discrete ẑ, the most common approach is to employ uniform quantization and define
p in terms of an underlying continuous density p′ [195].

p(ẑ) :=

∫
[−0.5,0.5)n

p′(ẑ+ v)dv, ∀ẑ ∈ Zn.

For each entropy modeling method, the assumptions imposed on p(ẑ) a priori to make the above
integral tractable and thus enable both a) and b) are the main factors determining the possible
architectures for the entropy model and have a great impact on the final performance.

Fully factorized model: one of the stronger simplifying assumptions we can make is that
each element of p(ẑ) is independent, enabling a fully factorized model. The model for each indepen-
dent marginal can be implemented with varying degrees of complexity, from a simple parametric
distribution such as a Gaussian or Laplacian to a neural network modeling the c.d.f. of the distri-
bution [82].

Hyperprior model: Despite its simplicity, the assumption of full independence is most likely
too strong. A typical way to model dependence between variables is to instead consider them
conditionally independent given some other latent variable [15]. Ballé et al. [82] use this technique
to extend their fully-factorized model to a latent variable model, known as the hyperprior approach.

z ∼ p(z|ĥ) (5)

h ∼ p(h) (6)

Following this approach, the hyperprior p(h) can be modeled in the same fully factorized way
as p(z) before. z is now modelled given the quantized hyperprior p(z|ĥ) using a 0-mean gaussian
whose standard deviation is generated from ĥ for each dimension of z. While the new latent
variable becomes ”side-information” which must also be compressed and transmitted, its size is
negligible compared to ẑ, and the added flexibility in the model tends to result in significantly
improved R-D performance. Intuitively, this additional information about the particular ẑ that is
being transmitted allows the receiver to adapt its entropy model.

Autoregressive and transformer-based models: more complex models can also be used,
enabling more sophisticated dependencies between each element of ẑ and the context that preceded

18



Figure 8: Illustration of feature compression. Top: the usual scenario where a client wishes to
reconstruct the input compressed by the server. Bottom: the server sends a compressed feature
representation of the input, which the client can directly feed to a task-specific head (e.g. semantic
segmentation in this case)

it at the cost of computational complexity, for instance in the case of autoregressive models [117].
Transformers have also been successfully employed for modeling complex relationships in the latent
space of ẑ, particularly in video compression. Mentzer et al. [162] can greatly simplify video
compression pipelines by relying on the modeling power of a transformer model. More recently, the
growth in research in large language models (LLMs) has also led to their exploration for compression,
highlighting the known connection between generative modeling and compression. LLMs have
been explored for lossless [174] as well as lossy [196] text, image, and video compression, showing
promising results in leveraging their predictive power and large context modeling for next-generation
compression algorithms.

INRs: Entropy-based end-to-end optimization has also been applied to good effect in INRs.
In this case, the weights of the network themselves are treated as z, and their distribution, af-
ter quantization, is modeled. This has shown competitive results for 3D scene [124] and video
compression [178].

2.3.4 Optimization Objectives

Traditionally, most works are concerned with distortion as measured by human perception, exploring
a variety of loss functions that attempt to best approximate this idea, most commonly MSE, SSIM,
or a combination of the two. Identifying loss functions that act as accurate proxies to human
perception is an active field of research not only within neural compression but also for generative
visual models in general.

Recent works have explored new trade-offs that can be navigated by reinterpreting what is
meant by distortion. Examples include the introduction of rate–distortion–perception [150] and
rate–distortion–realism [172] trade-offs.
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The continuing growth and deployment of deep learning algorithms in real-world applications
introduces a new use case, which can be viewed as a further reinterpretation of distortion. If the end
consumer of the data is an algorithm (e.g. a neural network), rather than a human, is compression
designed for human perception the optimal choice? From this perspective, recent works propose
reframing distortion from an algorithmic point of view. As illustrated in Fig. 8, the goal is not
necessarily to recover the original data such that it is minimally affected for a human observer, but
rather to produce compressed feature representations that enable algorithms (e.g. classification,
image segmentation, object detection) to perform well when using them as input [118]. Under
this setting, the distortion metric is not a function of some reconstruction of the original data but
rather based on the performance of such feature representations when fed to models for different
downstream tasks.

A more general setting that makes the task somewhat more complex is that one may not know
a priori the type of downstream tasks the embeddings will be used for, or labeled data for those
tasks may not be available during pre-training. Instead, the process of learning general-purpose
compressible features must rely on proxy losses which may borrow from self-supervised learning [208]
to identify which aspects of the data may safely be lost during compression without affecting down-
stream performance [129]. A similar idea has been applied to transfer data in the reverse direction,
from an edge device collecting data to a powerful server where that data can be analyzed, in a
paradigm known as Split Computing. Matsubara et al. [161] combine Knowledge Distillation with
neural compression to train a small encoder that can run on edge devices and produce compressible
features that are fed to a larger network on a server with more compute resources. They demon-
strate improved R-D performance compared to neural image compression methods that focus on
reconstruction. Furtuanpey et al. [205] further develop the framework, conducting a thorough anal-
ysis of bottleneck placement within the network. They further introduce a saliency-guided loss and
design blueprints for leveraging feature compression with different backbone architectures, showing
showing improved R-D performance.

Indeed, while foundation models for vision have been shown to generate embeddings that can
be leveraged for several tasks [143, 126, 192], the dimensions of their output feature space can
result in embeddings that are larger than the original data, making them impractical for storage
or transmission. How to best generate such general-purpose compressed embeddings is an open
question, however, a system capable of doing so could have a large-scale impact, democratizing
both data and powerful models by enabling the widespread distribution of powerful, ready-to-
use features. We deem this line of research to be particularly important as foundation models
increasingly become prevalent in EO [181, 192, 155, 191].
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3 Neural Compression for Remote Sensing

Remote sensing technologies are evolving and the number of earth observation satellites in space is
rising, with more launched in 2023 than any year before [201]. This enables the acquisition of satel-
lite images with increasing spatial resolution, broader spectral bands, higher temporal frequency,
and higher radiometric resolution [73, 212]. The increase in data volumes has made the transmis-
sion, storage, and processing of satellite imagery on a large scale an increasingly challenging task.
The study of image compression commonly focuses on natural images, which presents challenges
for the application of established compression approaches in the context of different domains. This
necessitates the development of data compression methods that are tailored to the specific require-
ments of remote sensing data. The following chapter examines these domain-specific requirements
and challenges in Section 3.1. Subsequently, an overview of compression research for remote sensing
images is presented in Section 3.2 and a discussion of future developments in Section 3.3.

3.1 Challenges

To outline the domain-specific challenges and opportunities for compression, we analyze the dis-
tinctive data characteristics of remote sensing data in comparison to natural images. Following
this, constraints imposed by the data acquisition and usage are discussed.

3.1.1 Data Characteristics

The resolution at which remote sensing images are recorded are defining characteristics that dis-
tinguish them from natural images and differentiate various types of remote sensing data. This
distinction is for example evident in comparison to RGB images, and has implications for the appli-
cability of existing architectures as the computational complexity and training behavior of neural
approaches can vary significantly [113]. Conversely, it also presents opportunities for compression
due to correlations along these dimensions.

• Spectral resolution. Remote sensing images typically comprise multiple spectral bands that
extend beyond the visible range, including infrared and ultraviolet. This allows for a com-
prehensive analysis of surface and atmospheric conditions. Multispectral data encompasses a
limited number of broad spectral bands, whereas hyperspectral data collects measurements
from a multitude of spectral bands (up to hundreds) that span narrow wavebands, increasing
the input data size and computational complexity of processing the data. Narrower wavebands
due to multi- or hyperspectral data cause adjacent spectral bands to be more correlated.

• Spatial resolution. The spatial resolution is defined as the size of a pixel, which represents
the distance between the measurement points of a sensor. Compared to other domains, remote
sensing data generally has a lower spatial resolution, as it covers large geographical areas from
a great distance. Consequently, individual pixels can contain highly relevant information for
downstream tasks, and images exhibit complex textures with rich information [194, 170].
At the same time, earth observations capture specific landscapes, thereby exhibiting spatial
redundancy. This includes both local texture information and global feature distribution
[177, 175]. Image data is accompanied by metadata on geographic coordinates, elevation, and
sensor angles.
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• Temporal resolution. Most satellites capture data of a specific geographic region at regular
intervals, resulting in a time series of images of a certain location. This temporal resolution
allows to track dynamic processes and environmental changes. Successive images show tem-
poral correlations due to slowly changing landscape structures but are also subject to seasonal
and weather-dependent changes. Data used in general compression research differs from this
as approaches are either built for image datasets, which share no temporal structure between
images, or as part of video compression research, where data frames are much closer together
than for a time series of satellite images.

• Radiometric resolution. Radiometric resolution refers to the ability of a sensor to measure
the intensity of radiation reflected from an observed object within a specific wavelength range.
For example, satellite data from the Sentinel series uses sensors with a 12-bit resolution, which
is higher than the radiometric resolution of natural photos often having a 8-bit range. This
high radiometric resolution provides more precise measurements but also leads to a larger
input alphabet, which can increase the complexity for compression algorithms. This is due to
the necessity of encoding a greater number of distinct values and the fact that larger alphabets
can reduce the probability of redundancy in the data. As a result, it becomes more challenging
to utilize patterns for efficient compression. Larger alphabet sizes are further linked to a larger
input data size and higher entropy, both of which impact the achievable compressed data size.

Remote sensing data is recorded for various purposes and with instruments that vary in spectral,
spatial, temporal, and radiometric resolution. This makes it challenging to define a typical remote
sensing image, as different datasets can vary greatly in these dimensions. Additionally, there may be
differences that are specific to the sensor or post-processing applied, which affects the brightness and
contrast of images, for example. The degree and steps of post-processing can also be an important
factor that distinguishes remote sensing data from natural imagery. As part of a comparison,
we analyzed the image entropy of Sentinel-2 satellite and ImageNet data. For each image, the
distribution of the measured pixel values is recorded and the image-specific entropy calculated, not
taking the pixel positions into account. If we compare this at dataset level, it provides information
on whether a dataset consists of images with low, fluctuating or high entropies. For this purpose,
we compute the histogram of pixel values for each image individually, given by:

pimg(xi) =
Number of pixels with intensity xi

Total number of pixels in image
(7)

The distributions obtained are used to calculate the entropy, resulting in an individual entropy
value for each image.

Himg(X) = −
n∑

i=1

pimg(xi) log pimg(xi) (8)

The results in Figure 9 show that the majority of natural photos have a very high entropy. ImageNet
is composed of a wide variety of scenes and motives, this analysis shows that the pixel values within
the images are also very diverse. This may be due to a generally greater variety of colors and
patterns, but can also be the result of more extensive post-processing of the photos, which leads to
higher-contrast colors. Satellite images, on the other hand, have a wider spread and on average a
lower entropy per image across the RGB bands. The low entropy of some images in the satellite
dataset can be explained by images of certain landscape scenes. For example, an image of the
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Figure 9: Histograms of per image entropy values for RGB bands. Left: 10000 randomly sampled
Sentinel-2 images from BigEarthNet. Right: 10000 randomly sampled images from ImageNet.

sea has a very concentrated probability distribution of pixel values. Those data subsets of specific
scenery potentially have lower entropy and therefore rather homogeneous input pixel values. This
is a property that may be exploited by domain specific compression algorithms.

Compression techniques leverage bias in a data set, allowing short bit rates to be used for
redundant elements in the input data. The design of a compression algorithm is therefore always
subject to a fundamental trade-off between broad applicability and data specificity. A general
compression algorithm is designed for a broad spectrum of data and can be used for a wide range of
images, but often falls short in performance because specific properties are not present throughout
the data. A dataset-specific algorithm, on the other hand, can be fine-tuned to the particular
patterns within a dataset, such as recurring landscape features in satellite imagery, resulting in
higher compression rates. The differences between natural photos and satellite data thus make it
difficult to use models from the natural photo domain for remote sensing. Even within remote
sensing, the variety of spectral, spatial, temporal and radiometric resolutions of the instruments
complicate the development of a single effective algorithm. Research therefore tends to focus on a
specific type of remote sensing data (See Section 3.2).

3.1.2 Data acquisition and application

In addition to underlying differences in data dimensions and characteristics, requirements for com-
pression of remote sensing data are caused by the manner of data collection, processing and use.

• Acquisition. Remote sensing is based on the collection of data by airborne or satellite-based
sensors, which is then transmitted to a ground station on Earth. Especially with satellite

23



data, the problem of transmitting the data to Earth, known as the data downlink bottleneck,
is currently a limiting factor in the data collection pipeline [148]. To increase the amount of
data that can be transmitted, satellite images are already compressed onboard to reduce their
size. However, due to the limited resources on board, only compression methods with low
computational and storage complexity can be used. For onboard satellite compression, the
Consultative Committee for Space Data Systems (CCSDS) recommends the use of a discrete
wavelet transform based on the ground-based JPEG2000 standard [27]. The computational
requirements of CCSDS have been significantly reduced compared to JPEG2000, considering
the limitations in the image processing units of satellites. Neural compression methods, which
are successfully used for lossy image compression, can outperform conventional transform
coding methods in terms of the trade-off between rate and distortion (as explored in Section 2).
However, this comes at the cost of higher computational complexity and therefore limits their
usability for on-board satellite applications.

• Application. Satellite data is crucial for a variety of applications like environmental monitor-
ing of above ground biomass [114], agriculture mapping of oil palm density [144] or in disaster
management for flood extent mapping [202]. All of these rely on the analysis of specific as-
pects and features in the data, which leads to diverse requirements for data processing and
compression. For remote sensing data, compression applied to data before it is distributed is
generally carried out at a high bit rate for data integrity purposes, with a tendency towards
almost lossless compression. This should achieve a balance between compression and preserv-
ing information crucial for downstream applications. Nowadays many of these process input
data with machine learning models. As a result retention of details for machine processing
becomes more and more important. Recent research in the field of lossy image compression
focuses primarily on optimizing for human perception, for example in terms of MSE or PSNR,
which might not align with the distortion picked up by downstram procsessing algorithms.

3.2 Classification of Compression Methodologies

In this section, we discuss approaches to the compression of remote sensing data with traditional
hand-crafted methods, the main algorithms used operationally for compression in the domain cur-
rently. We then discuss current work in adapting neural compression approaches to satellite imagery.

3.2.1 Traditional approaches

Most traditional methods such as JPEG and JPEG2000 are based on the framework of transform
coding. As introduced in Section 2.1.2, these methods transform the original data into a different
domain, usually the frequency domain, which enables more efficient coding. Transformations used
are for example the Fourier transform [8], the Karhunen-Loeve transform (KLT) [1, 6], the discrete
cosine transform (DCT) [5], and the discrete wavelet transform (DWT) [12]. These transformations
decorrelate the dimensions of the data, making it easier to compress. Due to their efficiency and
speed, transform-based methods are also widely used in remote sensing [22, 36, 23]. Among the
earlier studies in optical satellite data compression, Hou et al. [17] propose a variant of the JPEG
coding scheme that explicitly detects clouds to simplify the compression of cloud features. Gonzalez-
Conejero et al. [38] compresses remote sensing data by adapting JPEG2000 to input data containing
unimportant areas such as non-data regions. Based on JPEG, the Consultative Committee for Space
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Figure 10: CNN-based transformation as part of a tensor decomposition framework introduced by
Li et al. [97]. Figure taken from the original paper.

Data Systems (CCSDS) designed international remote sensing image compression standards which
are commonly used for onboard compression [26, 115, 34].

Transform-based compression methods for natural images focus on decorrelating the input along
the spatial dimensions. Remote sensing data, however, often contains an increased number of spec-
tral bands. To exploit this, handcrafted compression approaches have been extended to explicitly
decorrelate along the spectral dimension, leveraging the redundancies therein. Markman et al.
[21] extend the DCT to a third dimension for hyperspectral data. Similarly, Lim et al. [20] and
Luigi Dragotti et al. [18] apply a three-dimensional wavelet transform to hyperspectral images using
the three-dimensional version of the SPIHT algorithm. Du et al. [30] and Du et al. [32] combine
JPEG2000 with PCA for spectral decorrelation.

Other approaches that take into account the multispectral character of the data are tensor de-
composition techniques, which deal with multidimensional matrices, or tensors, by decomposing
them into a sum of simpler low-rank components. Important methods include the Tucker decom-
position [4], which approximates a tensor by a set of factor matrices and weight coefficients in
the form of a reduced core tensor. The column vectors of the factor matrices represent the set of
basis functions onto which the data is projected, thus defining the mapping between original and
compressed data. These methods are particularly effective for high-dimensional data such as hy-
perspectral images. In contrast to transform-based methods, tensor decomposition is more complex
but can achieve high compression rates for multispectral data [61, 68, 71] while preserving their
multidimensional structure. As a result, they are being explored for compressing multispectral
remote sensing images [39, 37, 42, 45, 46, 215]. Consequent work aims to lower the complexity of
tensor decomposition approaches for better applicability to the domain. Li et al. [75] applies Tucker
decomposition to multispectral images with comparatively few bands in a post-transform domain
and Li et al. [52] accelerates the application of nonnegative tensor decomposition for hyperspectral
image compression by a pairwise multilevel grouping approach.

3.2.2 Neural approaches

We now introduce different approaches to neural compression in the domain, an overview can be
seen in Table 2.
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Table 2: Contributions to the field of neural compression for remote sensing described in
Section 3.2 ordered along the axes of the taxonomy described in Section 2.2.

Axis Approach Papers

Transforms

Complexity Reduction [122, 188]
Novel spatial extraction [135, 157, 170, 193, 177]
Novel spectral extraction [135, 113]
Separate spectral/spatial extraction [136, 154]
Incorporate Wavelet Transform [194, 213, 197]
Bitrate Allocation [214, 203]
Image-specific (INRs) [187, 215]

Entropy Models Hyperprior with attention [177]
Multiple hyperpriors [175]
Split latent space [154, 194, 213]

Optimization Objectives Adversarial loss (GANs) [151, 185]
Downstream Embedding [206, 208]

Neural transformation. Li et al. [97] is one of the earlier papers that uses a neural component
as part of a traditional method and combines CNNs with tensor decomposition as seen in Figure
10. An encoder CNN plus a DCT is used to obtain a more compact representation of the input
data so that the non-negative tensor decomposition (NTD) is less expensive. The CNNs are trained
on the MSE of reconstructed images.

Autoencoder. An autoencoder represents the simplest form of a neural compression archi-
tecture. It compresses data by encoding it into a latent space with reduced dimensions, via a
bottleneck layer in the neural network. The network is trained on reconstruction errors between
the input and output. One of the earlier contributions applied to satellite imagery is Yang et al.
[26], which employs a three-layer autoencoder architecture. The activation function within the
bottleneck layer is modified to a ridgelet transform [16], which results in better performance than
that achieved by classic neural networks with sigmoid activation. Kuester et al. [113] were among
the first to use an autoencoder for hyperspectral satellite imagery. To cope with the high spectral
resolution, the spatial component is neglected and only the spectral component is compressed with
a simple autoencoder network with linear layers as displayed in Figure 11.

Rate–Distortion Autoencoders. Rather than relying only on dimensionality reduction, these
autoencoders are trained on a rate–distortion objective. Most current lossy neural compression
methods are based on this idea, leveraging the paradigm of end-to-end learned nonlinear transform
coding introduced in Section 2.1.2. In image compression, the networks are typically CNNs trained
end-to-end with a rate–distortion objective. Following the seminal work of Ballé et al. [63], which
demonstrates that end-to-end learned neural compression approaches can outperform hand-crafted
methods, notable progress has been made applying these techniques to remote sensing data. Various
approaches demonstrate the application of end-to-end learned architectures in the areas of optical
satellite imagery [122, 136, 154, 83], aerial imagery [170] and Synthetic Aperture Radar (SAR) data
[169]. CNNs are suitable for capturing spatial features. By increasing the size of the convolutional
kernels, information over large ranges can also be captured well, which plays an essential role in the
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Figure 11: Autoencoder for hyperspectral data by Kuester et al. [113]. Figure taken from the
original paper.

extraction of representations of images. However, the use of large convolutional kernels leads to an
increase in the complexity of the model.

Reduced–complexity Rate–Distortion Autoencoders. For on-board deployment of neu-
ral compression algorithms, the computational complexity must be kept within the limits of the
available hardware. Research in remote sensing compression thus focuses on adapting architectures
to reduce computational complexity.

Alves de Oliveira et al. [122] propose a reduced-complexity variational autoencoder that out-
performs traditional transform coding methods such as JPEG2000 [27]. By reducing the number
of network parameters and simplifying the entropy model, they design a lower complexity compres-
sion architecture that maintains competitive performance with other neural models. The fitting
of hyperpriors or nonparametric distributions is replaced by a parametric estimation of a Lapla-
cian distribution that effectively represents the embedded satellite images. Despite these advances,
these autoencoders still incur a high computational cost compared to traditional methods. Mijares
i Verdú et al. [188] extends the hyperprior VAE model to hyperspectral data by clustering the input
bands of an image into groups of three, whereby a separate neural model is applied to each group,
which reduces the computational complexity.

Instrument diversity. Different works have also explored how neural compression can be
tailored to the wide variety of data within the remote sensing domain. For aerial imagery, Zhu
et al. [170] adapt an end-to-end multispectral compression method based on CNNs for UAV data.
Their approach incorporates radiation calibration to achieve a more even distribution of input data
and integrates 1 × 1 convolutions to better utilize interspectral redundancies. In the field of SAR
data, Xu et al. [169] proposed a CNN model for end-to-end SAR image compression based on a
variational autoencoder with a hyperprior. Di et al. [157] proposed to utilize pyramidal feature
extraction to better capture the redundancy between image pixels. Their approach for compressing
SAR images involves a single Gaussian hyperprior framework and the pyramidal encoder to capture
both coarse and fine structures, along with a quality enhancement module based on a dense residual
network.

Architectural adaptations. Many works build on the hyperprior model [82] through archi-
tectural adaptations to the neural networks in the transform step. Xiang et al. [193] incorporate
long-range convolution and attention mechanisms to identify spatially redundant features. Their
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Figure 12: Spectral convolution taken from Kong et al. [136]. (a) 2D convolution; (b) 1D spectral
convolution. Figure taken from the original paper.

improved non-local attention model reduces computational complexity while outperforming stan-
dard neural methods. Kong et al. [135] also modify the encoder to extract spatial-spectral features
at multiple scales and adaptively adjust the weights of the features from the different branches
of the encoder network. To leverage both local and non-local redundant features, Fu et al. [175]
propose a mixed hyperprior net. This is based on a hyperprior VAE but employs two prior models:
a transformation-based prior to capture global redundancy and a CNN-based prior to capture local
redundancy. The model is applied to high-resolution remote sensing images (HRRSI) and enables
high-resolution reconstruction images even with high compression rates.

Gao et al. [177] also extend the hyperprior model by implementing an enhanced residual at-
tention module (ERAM) in the primary and hypercoder. This module applies a spatial attention
mechanism to generate importance masks for potential features, later used to adjust the bit dis-
tribution over latent channels. This is motivated by an analysis showing the varying importance
of latent features to the distortion measure. Their approach additionally uses a discrete Laplacian
mixture entropy model instead of a piecewise linear function.

Another common strategy is to decompose the spatial and spectral components in the model.
This contrasts with the common framework of neural compression approaches [82], where dependen-
cies between the image channels are not explicitly considered. Kong et al. [136] propose adaptations
to treat spectral and spatial dimensions separately. They introduce an encoder with a feature extrac-
tion module divided into two parallel parts and extract spectral and spatial features independently,
fusing them later for further processing. Figure 12 shows spectral convolution which is used for
the spectral feature extraction module. This method outperforms neural compression with unified
extraction and hand-crafted methods on Landsat satellite images. Similarly, Cao et al. [154] handle
the extraction of spectral and spatial features independently. In contrast to [136], spatial and
spectral features are not fused for further processing but are extracted completely separately. They
incorporate Tucker decomposition through tensor layers [83] for better decomposition of the multi-
way data representations. While not always motivated by complexity reduction, spatial-spectral
decomposition can also lead to more computationally efficient models, particularly when dealing
with a large number of spectral bands.

Hybrid methods. Some works combine the wavelet transform from traditional compression
with neural architectures. Anuradha et al. [197] employ the DWT for spatial-spectral decorrela-
tion in combination with LSTM networks for hyperspectral image compression. In order to more
effectively differentiate between high-frequency and low-frequency information, Xiang et al. [194]
build a neural compression model with a DWT module and Gaussian mixture models for entropy
estimation shown in Figure 13. The DWT is employed to transform the latent representations of
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Figure 13: Neural compression architecture with an incorporated non-learnable wavelet transform
introduced by Xiang et al. [194] as a Discrete Wavelet Transform-Based Gaussian Mixture Model.
Figure taken from the original paper.

a neural encoder into multiple sparse representations, for which separate probability distributions
are then estimated using a hyperprior and context model. This work thus combines an end-to-end
image compression scheme with a non-learnable transformation component.

Xiang et al. [213] also addresses the challenge of reconstructing high-frequency information
in remote sensing images, which often leads to edge-blurred artifacts. It introduces a two-branch
architecture that employs a DWT to separate the input data into high-frequency and low-frequency
components, which are then processed separately in dedicated sub-networks. As in the previous
work, Gaussian mixture models are used to estimate entropy models for the high- and low-frequency
components separately.

Explicit bitrate allocation. Some approaches add a mechanism for the neural codec to
explicitly control the code length allocated to different regions of the input. This is achieved
through the introduction of importance maps and attention modules, which can be used to weigh
the compression of certain areas of an input image. Ye et al. [214] use this technique to address
the challenge of preserving fine details in remote sensing images at high compression rates within a
VAE hyperprior model. Their method employs an image segmentation approach to create semantic
maps before compression, thereby ensuring enhanced detail fidelity. The compression architecture
incorporates an attention mechanism and a rate allocation technique that assigns higher compression
rates to regions with smaller-sized details. Deng et al. [203] integrate a quality map into a hyperprior
VAE architecture. This is designed to maintain a high information content in the regions of interest
while reducing redundancy in non-target areas. Rate allocation, guided by a quality map created
with a pre-trained Vision Transformer (ViT) network, serves to minimize redundancy and effectively
balance focused and unfocused regions.

Generative Adversarial Networks. GANs have also been used for compression of satellite
imagery. GAN compression models have shown impressive performance in the low-bitrate regime.

Leveraging the VQGAN [131] architecture, cf. Figure 14, such models usually consist of autoen-
coders employing GANs as decoder modules, and tailoring the associated adversarial loss to favor
specialized [185] or generalist [151] compressed representations.
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Figure 14: Vector-Quantized Generative Adversarial Network (VQ-GAN) architecture introduced
by Esser et al. [131] as extension of the Vector-Quantized Variational Autoencoder (VQ-VAE)
substituting the pixel-based image reconstruction loss by a discriminator network D. Figure taken
from the original paper.

Zhao et al. [151] optimizes for the visual realism of reconstructed images by including a percep-
tual similarity term within the adversarial loss of a Conditional GAN [54] decoder. On the other
hand, Li et al. [185] focuses on the generation of generalist compressed representations using Least
Squares GANs [76] to reconstruct (dense) low-frequency components from (sparse) high-frequency
components of the same original images.

Implicit Neural Representations. Alternative approaches to neural image compression
exist that do not rely on autoencoder backbones. In this regard, methods based on Implicit Neural
Representations (INRs) proved capable of outperforming JPEG2000 on both multispectral [187]
and hyperspectral [215] datasets.

In general, INR-based methods aim at regressing the channel values for each pixel of a given
image from the corresponding pixel coordinates, or transformations thereof. By optimizing for
the fidelity of the regressed channel values, a neural network is trained that encodes the implicit
mapping between the spectral values and the location (or information associated with it) of each
pixel. The set of trained weights then undergoes quantization and entropy coding, thus acting as a
compressed representation for images in the training dataset.

Li et al. [187] successfully apply INRs to multi-spectral image compression. In this work, the
authors train an MLP with equally sized residual layers to predict pixel values from longitude and
latitude coordinates respectively associated with pixel locations. Given the size of the input images
and residual blocks, an upper bound to the width of the MLP hidden layers is derived that allows for
effective compression. Based on that upper bound authors show their methods match the quality
of reconstruction of JPEG2000 with half the number of bits encoding each pixel.

A similar approach to hyperspectral imagery is implemented within the FHNeRF [215] model.
It aims at regressing hyperspectral pixel values from transformed pixel coordinates using Neural
Radiance Fields [141]. The proposed model almost doubles the reconstruction quality of traditional
and autoencoder-based neural compressors at comparable compression ratios.

Arguably, the main advantage of INR-based compressors is that they are agnostic to some
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inherent features of the original images, such as native resolution. In principle, the produced
representations are invariant of the scale of the original image, and their size uniquely depends on
the architecture of the model performing the regression task. In other words, rather than data
compression, methods relying on INRs perform model compression. While these methods stand
out as more generalist alternatives to autoencoder-based neural compressors, the latter still achieve
higher compression efficiencies for multi-spectral images and are not bounded by the size of the
compressor’s backbone model.

Feature Compression. The idea of compression feature representations of data suitable for
being processed for downstream tasks by algorithms, rather than for reconstruction, has also seen
some preliminary exploration in earth observation. Furutanpey et al. [206] leverage this approach to
mitigate the bandwidth bottleneck between satellites and base stations. They design an end-to-end
pipeline for on-board feature compression capable of producing task-agnostic features as well as
perceptually similar reconstructions of the input data. Their evaluation on benchmarks for object
detection from aerial images shows improved performance compared to neural image codecs and
existing neural feature compressors [161, 205].

Gomes et al. [208] use the same idea tailored to the transmission of features from data centers
to end users hosting models for training or inference. They use a rate–distortion objective that
combines masked auto-encoding as a form of self-supervision [159] with an entropy penalty to
encourage compressible, general-purpose features. They further leverage an existing foundation
model and show that fine-tuning a small portion of the pre-trained weights with this objective is
sufficient to turn it into a general feature compressor for classification and

3.2.3 Dictionary learning

Dictionary learning approaches remain popular in the remote-sensing compression literature. The
approach involves learning a set of basis elements (a dictionary) from the data, and then representing
data as sparse combinations of these elements, enabling efficient compression.

In Earth observation, Wu et al. [60] propose a hyperspectral image compression method based
on the double sparsity model, which efficiently captures and sparsifies signals using a learned sparse
dictionary. Their method, which involves sparse and entropy coding with Differential Pulse Code
Modulation (DPCM) and arithmetic codec, demonstrates superior rate–distortion performance and
better spectral information preservation than 3D-SPIHT and JPEG2000. Similarly, dictionary
learning is at the core of the work by Wang et al. [80], which utilizes a lossy hyperspectral data
compression method with sparse representation by learning a dictionary that induces sparsity in the
coefficient vectors of input signals. The approach leverages the energy compaction feature of sparse
coefficients within a lossy compression framework, demonstrating competitive performance with
state-of-the-art methods like JPEG2000 and 3D-SPIHT. Dictionaries exploiting spectral and spatial
correlations are trained using online dictionary learning, and hyperspectral data is represented
via sparse coding with these learned dictionaries. The sparse coefficients are then quantized and
entropy-coded to form the final bit stream. The framework supports using a base dictionary trained
offline or updating the dictionary for enhanced adaptivity, with different compression levels achieved
by allowing varying numbers of non-zero coefficients.

Ertem et al. [109] also employ dictionary learning to improve hyperspectral image compression.
This method generates superpixel maps for adaptive spatial–spectral representation, computes an
optimal dictionary, and determines sparse coefficients using Simultaneous Orthogonal Matching
Pursuit (SOMP). Innovations include a modified dictionary learning step, an ordering scheme that
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eliminates the need to send the superpixel map as side information, and using DPCM to reduce
sparse coefficient magnitudes. Their method was compared with others, including JPEG2000, on
datasets like Indian Pines and Washington DC Mall, demonstrating better performance in quality
metrics and anomaly-preserving performance.

3.3 Summary

To conclude this section, we summarize the current trends in neural compression for satellite im-
agery.Despite the persisting popularity of dictionary learning, recent work seems to favor building
on neural methods that directly optimize a rate–distortion objective, in particular the hyperprior
approach introduced by Ballé et al. [82]. The flexibility of this approach concerning the form of the
synthesis and analysis networks has enabled researchers to easily experiment with different archi-
tectures, with the ”Transform“ axis identified in Section 2.2 being the target of most investigations.

Motivated by the relatively static nature of consecutive observations of the earth’s surface for
most geographical locations, Wang et al. [92] use ideas from traditional video compression to com-
press sequences of satellite images. Recent work from Du et al. [204] has shown potential in ex-
ploiting the same characteristic through reference-based coding, where for a given earth observation
from a satellite, a historical observation from the same region is used as a reference, and only the
difference must be transmitted.

INRs also pose an interesting research direction, in particular for hyperspectral data, usually
consisting of a very large volume of highly correlated signals for which large training datasets
are typically less available than for multispectral or RGB data. The variety of earth observation
instruments leads to a very wide application space for compression. This results in different works
training and evaluating on different datasets, rendering comparisons between methods extremely
difficult.

Finally, recent work in neural feature compression shows promise in earth observation in two
distinct scenarios: the transmission of features from satellites to ground stations, overcoming the
data downlink bottleneck, and the transmission of features from data centers to analysts for model
training and inference.
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4 Neural Compression for Climate Data

Earth system models (ESMs) are one of the key tools for understanding the impact of anthropogenic
climate change on the Earth. ESMs model the dynamics of the earth’s atmosphere on a discretized
spherical grid; individual grid cells in current climate models are usually on the scale of around
100 kilometers (kms). However, with such a coarse resolution many important processes, such as
precipitation and deep convection, cannot be fully resolved which motivated the development of
the next generation of climate models with grid cells on the scale of 1-5 kms [50, 55, 77, 102, 123].
The increased resolution of these models also implies that they produce tremendous amounts of
data [58, 110]. For example, the recently launched Destination Earth initiative generates around 1
petabyte of data per day.1 The wealth of data generated by these models leads to new operational
constraints for climate and weather prediction; it is often no longer feasible to store all the generated
data on disk.

4.1 Challenges

4.1.1 Data Characteristics

Data generated by climate simulators has multiple key characteristics that set it apart from other
data modalities and emphasize the need for bespoke compression tools and algorithms:

• Multidimensional data. The output of models includes multiple variables, e.g. wind
speed, geopotential, temperature, etc., which are localized in space and time and are stored
in multidimensional arrays. While natural images and videos commonly only have a small
number of channels, i.e. 3 for an RGB image, climate models can have hundreds of different
output variables. A key feature of atmospheric data is that there is generally a high correlation
in space, time, and between the different variables. Furthermore, while the output is generally
saved in multidimensional arrays in data formats such as NetCDF and Zarr, different climate
models can use different grid projections for modeling purposes.

• Small spatial scales. Small scales are important (this is why we need km-scale models in the
first place). This makes compressing climate data fundamentally different from compression
methods for other datasets such as natural images. For natural images, blurring at smaller
scales might be desirable because it does not create images that are visually distinguishable
for humans. However, the climate system is inherently chaotic. Hence, accurately modeling
the evolution of the dynamics at smaller scales is important for accurately modeling the larger
scales dynamics. A key motivation for using km-scale models in the first place is to be able
to model smaller scale phenomena. Hence, compression algorithms that overly smooth data
over small scales may result in undesirable or unpredictable downstream effects.

• Extreme events. A key goal for climate modeling is to predict the probability of extreme
events such as floods or storms. It is therefore imperative that the statistics of these ex-
treme events are preserved when compressing the data, which may require additional explicit
constraints, due to their unlikely nature in the scope of entire datasets.

• Lack of quantitative metrics. As outlined in Section 2, compression methods are usually
evaluated based on how well they reconstruct the input data. This requires a quantitative

1https://stories.ecmwf.int/the-digital-twin-engine/
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measure to compare the original data, x, and the reconstructed data, x′. However, in climate
sciences, there is a general lack of quantitative metrics that can do this comparison. Classical
metrics such as the pixel-wise mean-squared error are often insufficient to capture the struc-
tural differences between inputs and reconstructions that climate scientists are interested in.
Ideally, any reconstruction should conserve the physical properties of the input, e.g. indi-
vidual clouds should have the same mass in the input data and the reconstruction and they
should be arranged in a physically consistent way. However, having metrics that can easily
and cheaply capture this is still an active research area.

4.1.2 Data Acquisition and Application

Modern climate models are executed on the world’s largest supercomputers. A single forecast run
often requires carefully orchestrating and integrating multiple sub-components, such as ocean and
atmospheric models. Despite the power of supercomputers, completing a single run can take several
days. Consequently, data generated from these models is typically produced once and then stored
for subsequent access by scientists. Researchers often need only a subset of the data, such as specific
time periods or particular variables, for their analysis so they often want to avoid downloading the
entire dataset. Given that data is usually generated only once, it is then logical to invest significant
computational resources in compressing it if this reduces the bandwidth required for transmitting
the data to scientists for further analysis.

4.2 Classification of Compression Methodologies

For climate data, lossless compression algorithms do not provide compression ratios that meaning-
fully reduce the disk space of the data [167]. Hence, most work investigates the opportunities of
using lossy compression algorithms. Most climate data, as we outlined above, is stored in multi-
dimensional arrays, hence efficient compression algorithms need to exploit the correlations between
the different dimensions of the data.

Most existing codecs for multi-dimensional arrays are hand-engineered (in the sense of Sec-
tion 1.2) and employ the transform-based compression approach described in Section 2. A key to
achieving good compression ratios is to exploit correlation in the data; many codecs divide the input
data into sub-blocks2 and try to identify correlations within a sub-blocks. SZ3 [160] uses a spline-
based interpolator as a transform to identify correlations in a given sub-block. ZFP [53] instead
decorrelates individual sub-blocks using an orthogonal transform. TTHRESH [93] uses a general-
ization of the singular value (SVD) decomposition to tensors with more than three dimensions to
transform the data.

Several studies have evaluated the impact of lossy compression on the output of climate sim-
ulators [70, 90, 167]. Specifically, Underwood et al. [167] develop a set of “assessments” that a
compressor needs to pass (e.g. sufficiently high SSIM score) in order for it to be safely used. They
identify SZ3 as the best lossy compressor but at the same time emphasize that more work is needed
to design quantitative metrics to compare the performance of different compressors.

Some compression methods directly exploit the fact that the data was generated from a chaotic
system. When simulating a chaotic dynamical system in 32-or 64-bit precision then a few of the
least significant bits in the IEEE floating point representation will generally constitute random

2For a d-dimensional array, each sub-block has size nd where n is the sub-block size.
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noise. These bits are then not useful in predicting the future state of the system and can there-
fore be discarded. This gives rise to the notion of how much “real” information there is in the
bit-representation for a given variable [74, 134]. This has been the motivation for a couple of
compression schemes [67, 134] which (sometimes adaptively) discard a certain number of least sig-
nificant bits in the mantissa of the floating point representation. The advantage of this approach is
that it is complementary to the compression schemes presented in the previous paragraphs because
it can simply be run as a pre-processing step before passing the dataset to a compressor.3

Compared to other data modalities such as images, text, or video there has been relatively
little work on developing neural compression methodologies for climate data. Existing work mainly
focuses on using implicit neural representations (INRs) to overfit a single neural network to a single
dataset [158, 180]. Specifically, [180] adapts INRs to climate and weather data by transforming
the input data using Fourier features [31, 120]. However, methods based on INRs tend to smooth
out extreme values which is generally undesirable. Overall, the development of neural compression
methods for climate and weather data is still an area of open research.

3The same argument has also been used to justify running climate and weather models with lower bit represen-
tation [112, 152, 138].
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5 Neural Compression: Implementation & Application

The process of using neurally compressed embeddings of Earth observation data varies largely from
using the images they are based upon. Therefore, in this chapter, we want to speculate about the
impact the use of compressed embeddings could have on not only storing and transferring the data,
but also on the analysis and application that are made possible.

5.1 Neural Compression for Geospatial Analytics Platforms

The exponential growth of data from EO missions has led to significant challenges in transfer, stor-
age, and processing, resulting in substantial resource expenditures. Despite the broad significance
of EO data across various fields [65], a compression method for EO data that would effectively
balance storage saving and processing speed is still not available. This renders at impossible pro-
cessing of the data on a large scale in environments other than the one it is already stored in. High
costs of transferring the data to another computing environment plays a major role in federated
geospatial analytics. However, as demonstrated in the previous sections, using neural compression
algorithms can drastically reduce the size of EO imagery. Therefore, a compression scheme based
on deep neural networks can contribute to solving the aforementioned challenges created by the
large size of EO data.

Spaceborne sensors usually have a limited lifetime of less than a decade and may be decom-
missioned much earlier if technical failures occur, e.g., as with the interruption of service of the
Sentinel-1B satellite [163]. Although follow-up missions often fill the data gap, these come with
updated hardware and, more importantly, slightly different acquisition modes, spectra, orbiting
properties, and inclination angles. That all leads to the acquired data formats and statistics to dif-
fer from the previous products. Foundational models for the decommissioned missions may therefore
under-perform or fail entirely for the newly acquired data. At the same time, it is desirable to keep
performance as high as possible for the older, archival data to allow for applications like long-term
timeseries analysis or change detection across different sensor generations. This calls for flexible,
interpretable (and possibly modular) formulations of foundational models that can be updated with
new data of (slightly) different characteristics at low computational cost.

Scaling traditional EO data flows often leads to transmitting unnecessary data because each
step in the pipeline operates in isolation to facilitate parallel processing over large areas. This issue
becomes more pronounced when integrating data from different modalities, particularly when data
resides on disparate (cloud) computing platforms. High compression of data transferred between
steps can significantly reduce data size, though decompression during processing may be time-
consuming. Further, the significantly reduced amount of data that must be transferred when
working with such neurally compressed data can lead to a proliferation of large-scale models in
the context of environmental monitoring: the reduced size allows for building downstream machine
learning models based on fused data, hosted in different data storage facilities, e.g.: fusing optical
imagery from Sentinel-2 hosted on the Amazon Web Services in Europe (AWS-eu-central-1) with
Landsat8 multi-spectral satellite imagery hosted in the United States (AWS-us-west-2), with large
spatial and temporal extent, Fig. 15.

General-purpose embeddings z generated by foundation models created in the transformation
step f (cf. Section 2.1.2) have shown to be effective in training task-specific heads for various
downstream tasks [192]. Combining these with neural compression as discussed in Section 2.3.4
optimizes data storage and transfer, while enabling diverse image analysis tasks on compressed
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Figure 15: Concept of data federation through compressed embedding sharing between data centers.

image vectors. Compressed embeddings strike a balance between storage and processing: the com-
putationally intensive generation of embeddings can be performed on high-performance computing
(HPC) systems, while lightweight decoding is reserved for final applications. Intermediate steps
can thus operate on the reduced data size provided by the embeddings. The shift from raw data
to neurally compressed embeddings shows potential for quicker data analysis, improved model-
ing accuracy, and advanced simulations, all while reducing data transfer (e.g., egress) and storage
costs. Moreover, working with image vectors, particularly when stemming from foundation models,
demonstrated high capabilities in few-shot learning [173], thereby substantially mitigating resources
needed for data labeling while maintaining high task accuracy.

While the use of deep neural compression of EO data can contribute to solving the challenges
of storage, transfer, and processing outlined above, the process of neural compression itself yields
new challenges that must be overcome to work with neurally compressed EO data.

Firstly, when working with neurally compressed embeddings, certain use cases could benefit
from processing them in cloud environments rather than locally: Even though applying neural
compression achieves significant compression of EO data, the amount of data needed to process high
spatial and temporal extent may still be very large. Further, training task-specific machine learning
models for processing the downloaded general-purpose embeddings may also - depending on the task
and the model’s architecture - require strong computational power. Lastly, not everyone may have
the appropriate technical infrastructure at hand to perform neural decompression which requires
passing the data through another pre-trained neural decoder network to reverse the transform coding
scheme (see Section 2.1.2). For these reasons, to fully reap the benefits of neurally compressed EO
embeddings, cloud platforms focused on processing EO data need to have the capability of loading
and then processing the neurally compressed embeddings. Currently, neither proprietary EO cloud
platforms such as Google Earth Engine [72] nor the OpenEO standard [146] for interacting with
EO cloud computing backends offers support for such neurally compressed embeddings.

Secondly, an open standard is needed for storing and transferring the compressed embeddings, for
example between storage and processing environments. To foster interoperability between systems,
such a file format must contain all information necessary for it to be decompressed to retrieve the
neurally encoded information. Yet, to our knowledge such a standard does currently not exist.
At the time of writing, the cloud native geospatial foundation [217] is conducting a survey about
how the geospatial community is storing embeddings in GeoParquet, with the aim of formulating
guidelines or introducing a standard on storing and exchanging embeddings in the future. While
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this survey may develop into a solution for storing raw embeddings z, it still does not solve the
challenge of creating a data format for storing neurally compressed embeddings in a standardized
way. Along with the compressed data, metadata must be provided to give insight into e.g. what
foundation model was used generate the embeddings z, and the geographic area to which these
embeddings apply. To make the neurally compressed EO data findable in terms of FAIR data
principles [66], they should be cataloged in a standardized way, for example, by registering them to
a Spatio-Temporal Asset catalog (STAC) with sufficient metadata.

Conclusively, we argue that existing data catalogs and EO processing platforms must be ex-
tended to support the provision and processing of (neurally compressed) embeddings. Only then it
is possible to fully materialize the advantages of working with embedding representations instead
of the base imagery.

5.2 Cost- and Energy-Efficiency & Latency

Energy efficiency is crucial in remote sensing; an example is the need to maximize the operational
lifespan of nanosatellites, ensure effective data transfer within limited downlink windows, and re-
duce operational costs [207]. Efficient onboard data processing reduces the volume of data needing
transfer, mitigating bandwidth constraints and allowing more critical data to be prioritized. Ad-
vances in Orbital Edge Computing and neural feature compression enable satellites to handle large
data volumes without excessive energy use, enhancing overall system efficiency. This is essential for
the sustainability and effectiveness of satellite constellations in capturing and transmitting valuable
Earth observation data.

However, the approaches reviewed have significant impact also for the ground operation of the
data infrastructure. In this section, we aim at giving back-of-the-envelope estimations that semi-
quantitatively seek to asses the role that neural compression can have in geospatial analytics. A
concise system analysis of the information and communication technology infrastructure is not in
the scope of this review. Also, a detailed scenario analysis is not manageable. However, we aim at
providing a first orientation with a simple model calculation. The demonstrative case we study is
the Copernicus program, with its main data sources being the Sentinel satellites. We investigate the
hypothetical case, where Copernicus data products are compressed and potentially decompressed
on the consumer side, and compare to the state without the compression. The focus lies on energy
efficiency, but aspects of cost-efficiency and latency will be included.

According to the Copernicus Data Dashboard4, by the time of writing this article, the total
volume of data products grow by 759 TB per month, and 6.2 PB of data products are downloaded
in the respective period, which we coarse round to 10 and 100 PB/year. Price indications for data
transport out of cloud storage (egress costs) are given on the website of Amazon Web Services
(AWS)5. While the detailed pricing depends on the site of host and consumer, 20 USD/TB is a
realistic lower bound for 2024, however this cost includes a high quality-of-service. Hence, a gross
data transfer cost of 2.000.000 USD/year for data product download is a first estimate.

The energy footprint of data transfer is very difficult to assess. For example, a meta-study
by Aslan et al. summarizes 14 studies that even after adjusting the system boundaries deviate by
a factor of ten and more[81]. The web page wholegraindigital elucidates the challenge of defining
suitable system boundaries6. The authors challenge the idea of a single metric measuring the energy

4https://dashboard.dataspace.copernicus.eu, accessed on 2024/06/27
5https://aws.amazon.com/s3/pricing/?trk=ap_card
6https://www.wholegraindigital.com/blog/website-energy-consumption/

38

https://dashboard.dataspace.copernicus.eu
https://aws.amazon.com/s3/pricing/?trk=ap_card
https://www.wholegraindigital.com/blog/website-energy-consumption/


of data transfer and point out that Aslan et al. only evaluate the usage of a subsystem. However,
as a starting point, we pick the number of 0.01 kWh/GB, carefully following the extrapolation in
Fig. 3 of Aslan et al. but correcting upwards. With this assumption, the annual energy cost of data
transfer sums up to about 1 GWh/year.

With these very coarse assumptions, we can proceed towards identifying the saving potential.
We assume a neural compression algorithm is used for 50% of the data products downloads and
achieves a compression factor (e.g. compression ratio of 100x) so that the data transfer of the
neural compression can be neglected in comparison to the standard transfer. Then, an energy
saving potential of 500 MWh/year seems possible.

However, the compression is associated with energy consumption. We propose a simple order-
of-magnitude estimate to assess the consumption that transfers the insights from computer vision
to remote sensing using BigEarthNet as intermediate, where multispectral data is brought to a
similar form as natural images [103]. Typical convolutional encoder networks from computer vision
require between several and several tens of billions of floating point operations, or GigaFLOPs, for
processing an RGB image of the characteristic size 224x224 that has been abundantly used in the
context of the ImageNet datasets [139, 33].

For transformer architectures that have gained a lot of traction also in the field of computer
vision, the operation count can be as high as hundreds of GigaFLOPs per image. For simplicity,
we assume here that compressing a multispectral image with resolution 120x120 is comparable to
processing a 224x224 RGB image. For encoding the entire BigEarthNet-S1 archive consisting of
590,326 non-overlapping image patches with a total volume of 66 GB, assuming 100 GigaFLOPs
per image, this adds up to 61̇016 FLOPs in total, or about 1015 FLOPs/GB.

The GPU that currently dominates AI compute centers, Nvidia’s A100 GPUs can, according to
our experience in Ref. [133], with moderate optimization sustain 50% of their nominial performance
using fp16 accuracy throughout the ML workloads. Hence, they can achieve approximately 150
TeraFLOPs per second at a power consumption of 400 W7. Based on our previous assumptions,
and adding an overhead of 50% for server operations and cooling, we obtain a processing time of
seven seconds and an energy consumption of about 1 Wh per GB. Scaling up to the yearly data
generation of about 10 PB per year, this amounts a total energy requirement of approximately
11.000 kWh for compressing the entire data. The total processing time adds up to approximately
two years, so with a single commercial eight-GPU server the continuous provision of compressed
data products can be realized.

Comparing the potential energy savings and the compression, despite all uncertainties, it is
apparent that a one-off compression of the data is almost negligible and appears as it is two orders
of magnitude apart from the transfer consumption. As a last factor, it is important to assess
the consumer side. Here we distinguish two scenarios. In scenario (a) the consumer performs an
ML operation directly on the transferred embeddings; in (b) the consumer decompresses the data
for other downstream tasks. In scenario (a) typically the user will save energy as the compact
compressed representation is potentially even better suited for this class of tasks. In scenario (b)
it is required to consider the energy consumption of the decompression. In many encoder-decoder
architectures, computational efforts of both are balanced between both. In the considered case, this
would in turn produce a computation effort of approximately 1015 FLOPs/GB, but it is important to
point out that the overall data consumption at present is approximately 10x higher than the amount
of incoming data. Furthermore it is important to consider with which computational devices (CPUs,

7https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/

nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
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deprecated GPUs, etc.) and with which expertise the decompression is performed. For example,
the energy efficiency can be 1-2 orders of magnitude worse, compensating the saving of the efficient
transfer entirely. However, projects like llama.cpp8 indicate that with advanced techniques such
as model quantization, even computationally demanding ML models can be executed on a wide
variety of hardware systems.

Finally, we would like to share two estimates demonstrating the possible latency improvements
when employing neural compression: A researcher may want to perform a spatio-temporal analysis
over 10 years worth of multispectral imagery across all of Germany. For May 2024, the sum
of all Sentinel-2 images available for the entire country equates to 470GB (L1C data product)
in JPEG2000 format. This extrapolates to an estimated volume of 56TB per decade. With an
internet download speed of 100MBit/s, the data is available with a delay of about 52 days, while a
hypothetical neural compression ten times more efficient compared to JPEG2000 may reduce the
time to only about a week. For a second example, a researcher may want to create a mosaic of
land cover information from Sentinel-2 imagery given a single timestamp. Assuming the global
land mass is covers an area of approximately 148 940 000 km2, and given a single Sentinel-2 tile
covers about 10 000 km2, that amounts to roughly 15, 000 tiles. With one tile consuming 0.8GB in
size, that amounts to 12TB of data downloaded volume to generate a landcover product again in
JPEG200. With the same internet download speed from the previous example, we obtain a latency
of 11 days compared to about 1 day when neural compression gets applied.

In summary, this analysis of the status quo of the data product generation and consumption
of the Copernicus program shows tremendous potential for savings in cost and energy scale, and a
reduction of the latency that can make data-intensive application also possible for consumers with
comparably lower bandwidth. However, the analysis is coarse, almost simplistic and suffers from
methodological problems regarding data transfer energy consumption. Especially the consumer
side requires a careful considerations, potentially education and training material to ensure that
the energy savings are not overcompensated on the consumer side.

Future projections are extremely challenging. Nvidias Road Map presentation at Computex 9

indicates optimism about future performance and energy efficiency gains that make compute-heavy
approaches more attractive. Comparably, the cost of data transfer is decrease as well. However the
complex interplay of efficiency and demand with focus on data transfer energy demand is explained
by Koomey and Masanet [137]. The increasing energy efficiency can lead to reduced energy con-
sumption, but a more accessible resource can generate increasing demand that overcompensate the
energy savings.

5.3 Democratization for Applications

As discussed in the previous sections of this work, the optimized compression of the massive raster
data generated by Earth observation systems and climate simulators shows potential for reducing
the energy cost and transmission latency both for data-distributing platforms and their end users.
As a result, stakeholders with limited compute or bandwidth may access scientific data previously
out of reach for their resources. Moreover, when applied to embeddings generated by large pre-
trained models, neural compression would also permit downstream users with modest compute
and deep learning expertise to benefit from expressive feature representations without the need for

8https://github.com/ggerganov/llama.cpp
9https://blogs.nvidia.com/blog/computex-2024-jensen-huang/
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training a backbone from scratch on their end. Here, we propose to illustrate our point with four
example applications that could directly benefit from such neurally compressed data.

5.3.1 Global Vegetation Structure Analysis

Worldwide mapping of vegetation properties is of prime importance for understanding the global
carbon cycle [95], the impact of human activities on carbon emissions [132], and the study of
ecosystem services [87]. The accurate and frequent mapping of a small set of vegetation structure
indicators such as canopy height (CH) and aboveground biomass (AGB) is key to the study of
terrestrial ecosystem functions [96, 140].

The traditional protocol for estimating such indicators requires in-situ–sometimes destructive–
manual measurement surveys. Due to the poor spatio-temporal scalability of this approach, much
research effort has been invested in characterising vegetation structure from remote sensing data
with terrestrial laser scanning (TLS) and aerial laser scanning (ALS) [153]. While ALS provides
accurate, dense, very high-resolution data, acquisition campaigns remain costly, limited to regional
scales, with revisit rates of several years. The ultimate need to scale vegetation mapping to global
scale with revisit rates below one year and low-cost data hence calls for space-borne data. Ideal
satellite observations for global forest analysis need to capture vegetation properties at high spatial
resolution with high revisit rate, and be freely available. Several works have proposed to map
forest structure from time-series of NASA/USGS Landsat or ESA Sentinel-1/2 acquisitions [142].
Recently, combining spaceborne LiDAR measurements from the NASA GEDI mission [108] with
Sentinel imagery has shown great potential for regressing forest biophysical variables like AGB or
CH at a global scale and 10 m resolution [183].

Still, Lang et al. [183] find that the prediction of a single, global map for the year of 2020 requires
extensive computational power. In order to cover the entire landmass of the Earth (excluding
Antarctica), a total of ∼ 160 terabytes of Sentinel-2 image data need to be downloaded. Running
the model on these images takes ∼ 27, 000 GPU-hours (∼ 3 GPU years) of computation time,
parallelized on a high-performance cluster to obtain the global map in ten days real time. Yet, the
breakdown of the entire process reveals that more than half of the time is spent downloading and
moving the data around.

Besides, the rise of self-supervised learning leading to the current emergence of remote sensing
foundation models [165, 191, 181, 210] renders possible the distribution of expressive feature rep-
resentations directly usable for downstream vegetation-related tasks [211] without the need for the
compute or AI expertise required to train the corresponding deep learning architecture.

Consequently, a pipeline capable of efficiently and accurately transmitting neurally-compressed
sensor data or pretrained feature representations would allow producing and frequently updating
vegetation structure maps. By lowering the compute, bandwidth, and AI skills required for us-
ing deep learning models to regress vegetation structure variables from remote sensing data, more
stakeholders may take part in the production and analysis of such products. This would in turn
benefit crucial applications such as ecosystem protection and global carbon cycle monitoring. What
is more, new use cases may also emerge from the facilitated access to global vegetation structures.
For instance, numerous industrial actors are in need for tools for monitoring deforestation-free sup-
ply chains without investing in large-scale data storage, computer infrastructure, nor deep learning
knowledge. A typical example are companies depending on commodities sourced in the tropics such
as palm oil or cocoa [190, 182].
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Figure 16: Aboveground biomass map from the Climate Change Initiative (CCI) Biomass
project [145]. Despite its global coverage, this product has a 100 m ground sampling resolution and
is only available for 2017, 2018, and 2020. This is limiting for applications needing to monitor the
evolution of vegetation structure at higher spatio-temporal resolution. Using neurally-compressed
satellite imagery or features would allow the computation and distribution of more frequent, higher-
resolution, global vegetation structure products.

5.3.2 Ship Detection for Maritime Awareness

Ship detection is an important aspect of maritime awareness, as ships often carry valuable cargo
and pose a potential threat to populations and infrastructure. There are various methods for
detecting ships, including SAR [35], optical modalities [41] and Automatic identification system
(AIS) [56]. EO data allow ship traffic monitoring and the identification of potential security threats
on large areas and the support of AIS data provides a technology used for maritime safety and
security in near real time to identify and track vessels. Receiving timely, reliable and meaningful
information is therefore crucial. In the last years, AI and ML have been used to detect, identify and
classify vessels in an automatic way [57]. Vessel identification could greatly benefit from neurally-
compressed remote sensing maritime images or corresponding pretrained features in order to:

• Compress the images to improve data transfer latency and facilitate access to relevant sources
and collateral data (e.g., AIS).

• Support the creation tools for ship and port monitoring with minimal data labeling.

• Support the fusion of GeoData with AIS data for anomaly detection of ship movements.

5.3.3 Climate and Air Pollution Prediction

As described in Section 4 high-resolution climate models are able to resolve key small scale phe-
nomena such as clouds and ocean eddies. An additional advantage of the increased resolution of
modern climate models is that their generated data is now at the same resolution as the observa-
tions from remote sensing devices such as geostationary satellites. However, the sheer volume of
data generated poses challenges for full scientific exploitation, as the datasets are often unwieldy
for efficient analysis and distribution.
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The ability to compress the data into embeddings produced by a foundation model would
significantly broaden the access to these datasets and enable new workflows. For example, the
potential use cases for the generated embeddings include:

• Training cloud classification and air pollution prediction models directly in the embedding
space, circumventing the need for complex and computationally expensive image processing
methods. This includes identifying and tracking convective storms in the embedding space.

• Detecting extreme events by modeling the distribution of embeddings and detecting out-of-
distribution samples directly in the embedded space.

• Using the embeddings to compare the outputs of climate model simulations with observational
data. Meaningful embeddings make it possible to compute statistics about the occurrence of
individual cloud types (e.g. deep convection and shallow convection) which is more difficult
in the raw data space [189].

Hence, the development of geospatial foundation models have the potential to significantly advance
our understanding of climate dynamics and improve the accuracy of climate predictions.

5.3.4 Early Crop Stress and Yield Prediction

European agriculture is continuously affected by an increasing frequency of weather extremes [107,
111], which are expected to increase in magnitude and frequency in the near future. How crops are
affected by adverse weather conditions strongly depends on the crop’s development stage. Systems
for timely monitoring of crop phenology are necessary to understand and assess the impact of
climate change on crop production [25]. Sentinel satellite missions [44] have significantly contributed
to agricultural monitoring with their high temporal frequency and spatial resolution. Despite
the development of crop maps and crop yield forecasting activities at the European scale [105],
integrating Earth observation and weather/climate is needed to capture the effect of increasing
weather extremes on agricultural phenology.

In particular, the early prediction of crop stress or crop yield at a country or continental scale
could benefit from Sentinel-1/2 time series to monitor crop phenology. Indeed, satellite time series
have proven to improve crop type classification[91], as they capture the dynamic changes in crops
spectral and temporal signatures throughout the growing season. Comparatively, methods based
on single-date imagery fail to accurately capture variations in phenology, biomass accumulation,
and the effects of local conditions.

While crop-related tasks have proven to benefit from multimodal, multi-date satellite imagery,
mobilizing the necessary data and running models on it requires significant computational resources.
An efficient compression pipeline would allow the distribution of raw imagery or embeddings to
stakeholders currently hindered by bandwidth and hardware requirements. Such pipeline would
support a range of actors in the agricultural community: farmers and agricultural organizations
(e.g., improved monitoring/forecasting of field damage assessment), the public sector responsible
for governing the transition of agriculture, the private sector, including agricultural technology and
machinery industries, seed companies and agribusiness retailers, the agrochemical industry, and
the insurance sector for risk management, and environmental agencies conducting crop forecasting
activities.
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Figure 17: We represent downstream applications from the perspective of conceptual dimensions
relevant for neural compression methodologies: multi-temporality and multi-modality. References
to existing neural data compression literature are positioned with respect to these concepts. A
gap in the literature can be observed for the compression of multimodal and multi-temporal data,
showing potential for several downstream applications.

6 Perspectives & Recommendations

We conclude our literature survey on neural compression for geospatial analytics by a summary
presented through Fig. 17. Novel methodologies to compress Earth Observation (EO) and Earth
System Model (ESM) data need to cover a wide range of use cases—from single-image compression
to embedding long time series, while incorporating information from a plethora of sensors and
simulated physical quantities. However, existing (neural) compression algorithms only partially suit
such needs. Image compression offers techniques to compress single-timestamp and single-modality
data. Recent developments in foundation models work towards joint representation learning of a
variety of remote sensors. Video compression provides concepts to summarize time series of images
as relevant to ESM applications. However, those algorithms currently lag support for multi-modal
inputs.

Earth Observation. Given radar, LiDAR, and multi-spectral sensors operate on various bands
of the electromagnetic spectrum, Hyperspectral EO data compression offers a direction towards
multi-modal compression. However, a clear deficiency in the current research in the field is the lack
of an established methodology to quantitatively compare methods. A dataset meant as a benchmark
for learned compression for the wide range of existing remote sensing modalities are scarce or not
used widely enough to enable systematized comparisons. The availability of standard training
datasets, and perhaps more importantly, the alignment of the research community on standard
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evaluation datasets for different earth observation modalities is critical in enabling improvements
in methodology in the field.

Further development of the transform f for neural compression to better suit different modalities
within remote sensing data seems bound to continue to be a fruitful research direction. However,
it should be noted that this direction poses the risk of incentivizing continuous small adaptations
to methods proposed in the field of natural image compression with limited innovation regarding
remote sensing compression. On the other hand, other differentiating data characteristics in this
domain seem relatively underexplored as of yet regarding their integration in neural compressors.
For instance, remote sensing data is very rich in metadata. Specifically, geolocation and time of
capture may be informative

While neural video compression has been successfully employed in natural videos, a major
difficulty is its usual reliance on optical flow fields and their compression, which proves challenging
in scenes with fast motion in uncorrelated directions. The adaptation of these techniques to Earth
Observation, where such optical flow fields are mostly absent, has the potential to yield great
compression ratios where the goal is to transmit a temporal sequence of samples.

Earth System Modeling. Compared to Earth Observation, neural compression for climate
model data has little to no track record in the academic literature. Existing approaches for compress-
ing the outputs of climate simulators mainly rely on hand-engineered transform coding schemes.
Data-driven neural compression offers an attractive alternative. A major challenge poses model-
ing of correlations over long, climate-relevant timescales. In principle, neural compression schemes
should be able to efficiently exploit these correlations but their application to this problem domain
has been relatively under-explored.

However, the biggest obstacle to designing and evaluating compression schemes is the lack
of agreed-upon quantitative metrics that can be used to reliably assess whether lossy compression
schemes preserve all the relevant aspects of the data for climate analysis. Hence, future work should
not only focus on the development of new compression schemes, but also new metrics designed along
with domain experts to meaningfully evaluate and compare different codecs.

Foundational Models for Geospatial Analytics. A desirable property of foundational
models that is currently underexplored for neural compression would be to tightly integrate well-
calibrated uncertainties by design. Model outputs with well-calibrated uncertainties could ease
integration not only into downstream tasks based on deep learning but also, and more importantly,
become a natural interface to Bayesian methods [121, 28], mechanistic modeling [49], and the exist-
ing rich statistics toolbox including significance tests [9]. Furthermore, well-calibrated uncertainties
can work as a natural link to physics-based forward simulations in computational science [101], e.g.
to tightly integrate radiative transfer models with learning-based approaches in remote sensing.
Computing uncertainties along with model outputs would also act as a natural early alert if a given
foundational model would be applied to new data far away from the original training distribu-
tion. In that way, foundation models capable of uncertainty prediction could, for instance, identify
strategical training samples within an active learning setting.
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